Extreme Convection of the Near-Equatorial Americas, Africa, and Adjoining Oceans as seen by TRMM

نویسندگان

  • MANUEL D. ZULUAGA
  • ROBERT A. HOUZE
چکیده

This study documents the preferred location and diurnal cycle of extreme convective storms that occur in the tropical band containing the east Pacific Ocean, Central and South America, the Atlantic Ocean, and northern Africa. Data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar show three types of convective-stratiform structures that constitute extreme convective events: deep convective cores (DCCs), wide convective cores (WCCs), and broad stratiform regions (BSRs). Interim ECMWF ReAnalysis (ERA-Interim) data show the associated synoptic environmental factors associated with the occurrence of extreme convective features. The DCC,WCC, and BSR echoes are associated with early, middle, and late stages of convective system development, respectively, and the statistics and timing of their occurrence are related to topography and life cycle behavior of the convection. Storms containing DCC occur primarily over the Sudanian savannas of Africa and near the mountains in northern South America, being diurnally controlled. Storms with WCC manifest over land, in the same regions as the DCC, but also over oceanic regions. They appear around the clock but with maximum frequency at night. They are favored in regions of midlevel synoptic-scale low pressure systems, which over the sub-Sahara are the troughs of easterly waves. Storms containing BSRmaximize over oceanic regions west of Africa and South America, where they exhibit a weak diurnal cycle with a slight midmorning maximum. Off the west coast of South America, the storms with WCC and BSR have longer lifetimes enhanced by orographic lifting over the Andes. The storms with BSR in the east Pacific Ocean often develop into tropical cyclones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations

[1] The diurnal cycles of surface rainfall, population of precipitation systems, deep intense convection reaching near the tropopause, lightning flash counts, cold clouds, and vertical structure of precipitation are analyzed over the tropics, using 9 years of TRMM Precipitation Radar, Visible and Infrared Scanner, and Lightning Imaging Sensor measurements. The diurnal cycles over land include a...

متن کامل

The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite

For over 16 years, the Precipitation Radar of the Tropical Rainfall Measuring Mission (TRMM) satellite detected the three-dimensional structure of significantly precipitating clouds in the tropics and subtropics. This paper reviews and synthesizes studies using the TRMM radar data to present a global picture of the variation of convection throughout low latitudes. The multiyear data set shows c...

متن کامل

Orogenic Convection in Subtropical South America as Seen by the TRMM Satellite

Extreme orogenic convective storms in southeastern South America are divided into three categories: storms with deep convective cores, storms with wide convective cores, and storms containing broad stratiform regions. Data from the Tropical Rainfall Measuring Mission satellite’s Precipitation Radar show that storms with wide convective cores are the most frequent, tending to originate near the ...

متن کامل

An Analysis of the MJO Guided by TRMM Rainfall Data

The Madden-Julian Oscillation (MJO), an eastward-propagating equatorial disturbance most active during the boreal winter, dominates atmospheric intraseasonal variability in the tropical Eastern Hemisphere. The MJO involves cyclic patterns of suppressed convection and intense rainfall, has a period ranging from 20-100 days, and is manifested in numerous atmospheric and oceanic variables. This st...

متن کامل

Unsteady Heat and Mass Transfer Near the Stagnation-point on a Vertical Permeable Surface: a Comprehensive Report of Dual Solutions

In this paper, the problem of unsteady mixed convection boundary layer flow of a viscous incompressible fluid near the stagnation-point on a vertical permeable plate with both cases of prescribed wall temperature and prescribed wall heat flux is investigated numerically. Here, both assisting and opposing buoyancy forces are considered and studied. The non-linear coupled partial differential equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015